INLAND NAVIGATION ECONOMICS WEBINAR SERIES #4 Waterway Traffic Projections

Wes Walker

Co-Technical Director, PCXIN Huntington, WV 13 March 2013

US Army Corps of Engineers BUILDING STRONG_®

Waterway Traffic Demand Forecasts or Predictions

"The only thing we know for certain is that we're going to be wrong."

- " It was for the wrong reasons, but we were right!"
- We don't do predictions
- Want projections useful for our planning purposes.

"Part of the trick, part of the art of forecasting figuring out which model is the best model for the situation."

Waterway Traffic Demand Objective

- Objective: unconstrained waterway traffic demand projections
- Put aside willingness-to-pay for waterway transportation at this point
- Four tier transportation model
 - 1. Global demands
 - 2. Flows between trading partners
 - 3. Routes taken
 - 4. Mode used on the route

Waterway Traffic Demand Future Demand vs Future Traffic

- First three tiers and part of the fourth
 - exogenously determined
 - no General Equilibrium Model to internally work through these tiers

Partial equilibrium models

- uses set of flows with potential to move by water (waterway traffic demands)
- builds Wtp/demand schedule to forecast waterway traffic

Scope How much Voodoo do you do?

- Temporal
- Geographic
- Sectors
- Art and science
- Sense and Sensibility or Credence and Credibility?
- Being SMART

Scope

ER 1105-2-100; Appendix E, E-9

http://planning.usace.army.mil/toolbox/library/ERs/a-e.pdf

- 1. Identify the commodity types susceptible
- 2. Identify the study area origins & destinations
- 3. Determine current commodity flow land & waterway (WCSC) & interviews

6. Forecast potential waterway traffic by commodity

- No more than 10 year intervals
- Application of indices to base year
- When inappropriate, secondary data, interviews, expert opinions & historical flow patterns

Scope

Can You Have It All? Be SMART

- Press leadership to make sure the PCXs are prepared with:
 - ► Data
 - Historic Traffic
 - Forecasts
 - Rates, etc
 - Models Certified
- Be ready to do some of the heavy lifting
- Give some thought to technique used

Scope Identify the Main Drivers

- Natural resources and reserves
- Economic growth
- Government regulation & tax policy
 - Deregulation Staggers Act & dereg of utility sector
 - Ethanol credits
 - Transportation safety/infrastructure & food security regulation
 - Environmental regulation
 - Clean air \rightarrow utilities, refineries, chemical plants, steel mills
 - Clean water \rightarrow mines, wells, industrial facilities
 - Climate change → exports? utilities?
- Technology → shale gas, emissions,
- Global demands \rightarrow grain, coal, containers?
- Global infrastructure
 → Panama canal, world fleet, ports, highway
 and rail in competing countries

Scope

ER 1105-2-100; Appendix E, E-9

http://planning.usace.army.mil/toolbox/library/ERs/a-e.pdf

- 1. Identify the commodity types susceptible
- 2. Identify the study area origins & destinations
- 3. Determine current commodity flow land & waterway (WCSC) & interviews

6. Forecast potential waterway traffic by commodity

- No more than 10 year intervals
- Application of indices to base year
- When inappropriate, secondary data, interviews, expert opinions & historical flow patterns

Step 1. Susceptible Commodities Natural Resources Foundation

Step 1. Susceptible Commodities Resource Linkages

Step 1. Susceptible Commodities Resource Linkages (cont.)

Step 2. Study Area - ODs Domestic Produce/Consume

Step 2. Study Area - ODs Global Produce/Consume

BUILDING STRONG_®

Step 3. Current Commodity Flows WCSC - Domestic

Total 2010 Volume: 566 Million Tons Total 2009 Volume: 523 Million Tons (+ 8%)

- WCSC annual census
- These are the prime suspects
- Not enough to make decisions
- Flows microscopic needs
 - ► How much?
 - ► Which locks?
 - ► Which channels?

Step 3. Current Commodity Flows WCSC - Export Coal

Exports in Short Tons by Custom District

Norfolk 22,159,262 40,415,244 18,255,982 82					
	Custom District	2007	2011	Difference	% Change
Mobile $7622582 10094538 2471956 32$	Norfolk	22,159,262	40,415,244	18,255,982	82%
	Mobile	7,622,582	10,094,538	2,471,956	32%
Charleston, SC 123 358 235 191	Charleston, SC	123	358	235	191%
New Orleans 3,980,782 21,376,884 17,396,102 437	New Orleans	3,980,782	21,376,884	17,396,102	437%

- All 100% rail, except New Orleans
- Approx 65% percent of New Orleans by water from ORS
- Export coal traffic has picked-up some of the loss due to utility coal decline
- These four CDs account for 68% of total US coal exports

Step 3. Current Commodity Flows Changes? – Govt Publications

- Resources/ reserves
- Industry trends
 - Global
 - Domestic
- Company plans
 - Plant closures/ openings
- High level view

iouroe: Energy Information Administration based on data from various published studies /pdated: May 9, 2011

17

Step 3. Current Commodity Flows Changes? – Industry Interviews

- Company plans
 - Plant closures/ openings
 - Sources & markets
 - Modes and decision process
- Short horizon 1-3 years, electric utilities 10 years

Step 6. Potential Waterway Traffic Four Tier Model

- Global demands
- Flows between trading partners
- Routes taken
- Mode used on the route

Step 6. Potential Waterway Traffic Techniques

- 1. Base (reference) year and index
- 2. Apportionment by history and survey
- 3. Expert analysis
- 4. Extrapolation based upon regression analysis
- 5. Models
 - Sector models Global Grain model and Greenmont Energy Model (both LP)

Step 6. Potential Waterway Traffic Base Year and Index

Reference Year

- Reflective of recent volumes and patterns
- Adjust based upon industry surveys or other sources
- Indices
 - Demographic & earnings Geographic <u>http://www.woodsandpoole.com/</u>
 - Government industry forecasts (USDA & DOE)
 - Country & industry IWR has Global Insight
 - Short term industry forecasts

Step 6. Potential Waterway Traffic Apportionment

- Requires detailed data, appropriate where available & can survey companies
- Example Utility sector
 - Electricity demands
 - Generation by plant
 - Fuel share by plant
 - ► Coal consumption
 - ► Coal source
 - Modal shares

Step 6. Potential Waterway Traffic Apportionment - Advantages

Advantage

- Improved knowledge of sector credibility
- Grounded in company plans & synched with government forecast
- Disadvantage
 - Requires lots of data
 - Multiple views of future difficult to ascertain

Step 6. Potential Waterway Traffic Expert Analysis

- Focused assessments of potential
 - New commodities (containers, shale gas)
 - New trends

 (export coal,
 Panama
 expansion)
- Credibility

BUILDING STRONG_®

Step 6. Potential Waterway Traffic Expert Analysis - Analyst

- Especially useful for scenario development
 Analyst describe/select scenarios
- Independent analysis does not absolve the analyst
 - Analyst still needs to know WHAT to study
 - Analyst still needs to be able to scope the exercise

Step 6. Potential Waterway Traffic Statistics - Trends

•Trend extrapolation – lot of variability at lock level makes microscopic view difficult

By commodity

Step 6. Potential Waterway Traffic Statistics -Time Series/Cross Sect

- Econometrics Battelle and Wes Wilson, U of Oregon
 - Struggle to get good fits at the lock level
 - Microscopic forecasts needed location matters
- Used to extrapolate electricity demands beyond what industry provides - input

Step 6. Potential Waterway Traffic Models – LP Models

- Demands estimated exogenously
- Minimize cost of meeting the given demand
 - Global Grain Model
 - Greenmont Energy Model
- Experience
 - Powerful models, reasonably good job of estimating flows
 - ► Weak at modal split

Step 6. Potential Waterway Traffic Models – Regional Yield Forecasts

Step 6. Potential Waterway Traffic Models – Input Price Forecasts

Models

 have
 capability
 of
 capturing
 effect of
 price
 changes

Step 6. Potential Waterway Traffic Advantage - Linear Programming

- Scenario testing
- Spatially based, production cost functions by region

Figure 19: U.S. Total Coal Use & Export

Step 6. Potential Waterway Traffic Disadvantage - Linear Programming

- Lots of data
- Results turn on a mil – volatile micro data
- Absent analyst discretion
- Approval for use – testing & proprietary

Figure 7.3.1d. Comparison of Barge Reach Volumes for Ethanol Scenarios, Base Case, Mid Ethanol and High Ethanol Demand Scenarios, by Crop and Total.

Step 6. Potential Waterway Traffic Uncertainty

- Random walk to build confidence intervals and statistics – requires faith that past is prologue
- Trend analysis same issue
- Scenario testing
 - Environmental & trade regulations
 - Economic growth
 - ► Technology
 - Global expansion/contraction

Recent Forecast Reports NETS & PCXIN

Upper Miss – Global Grain Model – NDSU

http://www.corpsnets.us/docs/LongTermForecastCommodity/ ReportLongerTermForecastingofCommodityFlowsontheMississippiRiver.pdf

Panama – Tioga – coal & grain export, COB

http://inlandwaterways.lrh.usace.army.mil/downloadfile.cfm?file=200B78BA-C72F-C9AA-C04D230CBB746113

Inland Opportunities

http://inlandwaterways.lrh.usace.army.mil/documentbrowser/? syspage=document&item_id=27906

- Shale Gas and Electric Utilities Mar 2013
- Shale Gas impact Tioga June 2013

- Comments or questions?
- Comments on presentation in your email to Mark Hammond

Next week:

Date	Webinar Title	Lead	
2/20/2013	Inland Navigation Economics 101	Mark Hammond	
2/27/2013	Great Lakes Navigation Economics 101	Roger Haberly	
3/6/2013	Navigation Data Resources	Dick Ash	
3/13/2013	Waterborne Traffic Demand Forecasting	Wes Walker	
3/20/2013	Transportation Rate Analysis & Externalities	Lin Prescott	
3/27/2013	Lock Capacity and Engineering Reliability	Mark Lisney	
4/3/2013	Navigation Component Engineering Reliability	Greg Werncke	
4/10/2013	Elasticity of Demand - Shipper Responsiveness	Mike Hilliard	
4/17/2013	Vessel Operating Costs - Inland	Bill Frechione	
4/17/2013	Vessel Operating Costs - Great Lakes	Roger Haberly	
4/24/2013	Navigation Economic System Modeling	Bud Langdon	
5/1/2013	Summary Series Wrap-up	Bill Frechione	

BUILDING STRONG_®